КАЛУЖСКИЙ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» (КФ МГТУ ИМ. Н.Э. БАУМАНА)

Беккель Людмила Сергеевна

ИДЕНТИФИКАЦИЯ БУМАЖНЫХ ДОКУМЕНТОВ ПО НЕВОСПРОИЗВОДИМОЙ МЕТКЕ, СОЗДАННОЙ СТОХАСТИЧЕСКИМ ЭЛЕКТРОРАЗРЯДНЫМ ПРОЦЕССОМ

Специальность 05.13.19 — Методы и системы защиты информации, информационная безопасность

> Научный руководитель: кандидат технических наук, доцент Шкилев Владимир Дмитриевич

Актуальность темы исследования

Бумажные документы — сопроводительные документы на продукцию, ценные бумаги, удостоверения личности, документы об образовании и квалификации содержат конфиденциальную информацию ограниченного доступа, которая нуждается в защите от неправомерного модифицирования, копирования. При настоящем уровне развития компьютерных технологий и в условиях совершенствования офисной техники полученную копию документа отличить от оригинала порой невозможно.

Средствами защиты информации могут служить техническое, программное, программно-техническое средство, вещество и (или) материал. Для идентификации документов — проведения процедуры выявления их тождественности по совокупности характерных признаков предназначены реквизиты, позволяющие ее идентифицировать.

Существующие правила идентификации бумажных документов по наименованию и коду организации, наименованию и коду формы документа, дате, регистрационному номеру документа, подписи, печати, грифам согласования и утверждения при современном уровне развития компьютерной техники и технологий не могут обеспечить защиту бумажных документов от угроз их модификации и копирования.

Поэтому актуальность темы исследования определяется необходимостью поиска нового метода идентификации бумажных документов и возможности его реализации.

2

Цель исследования — совершенствование существующих средств защиты информации бумажных документов от реализации угроз их фальсификации.

Научная задача заключается в разработке программноаппаратного комплекса для идентификации документа по дополнительному реквизиту — невоспроизводимой метке, наносимой стохастическим процессом на документ, и коду документа-оригинала для повышения защищенности информации бумажных документов.

Объектом исследования является система бумажного документооборота, подвергаемая воздействию атак несанкционированного доступа.

Предметом исследования является процесс создания стохастическим электроразрядным способом дополнительного реквизита для идентификации бумажного документа — невоспроизводимой метки и алгоритмы обработки, кодирования и распознавания ее информации.

Для достижения поставленной цели в работе решены задачи:

- Теоретическое исследование существующих методов идентификации.
- Разработка методики определения угроз безопасности информации бумажного документооборота и оценка защищенности информации бумажных документов.
- Разработка технологии электроразрядного нанесения индивидуальной невоспроизводимой метки на бумажном носителе и выбор средства кодирования идентификационных признаков метки для идентификации информации кода с изображением метки.
- Разработка автоматизированной системы идентификации бумажных документов по стохастически нанесенной метке и QR-коду.
- Экспериментальные исследования защищенности бумажных документов от подделки.

Научная новизна результатов работы:

Метод идентификации бумажных документов отличается от известных тем, что:

- В отличие от существующих методик определения угроз безопасности информации в информационных системах, не решающих вопросы защиты системы бумажного документооборота, разработана методика, по которой составлена модель угроз безопасности информации бумажного документооборота и произведена оценка риска их реализации.
- В отличие от существующих воспроизводимых реквизитов бумажных документов применена невоспроизводимая метка, нанесенная на документ стохастическим лавинно-стримерным разрядом при рассчитанных режимах работы электроразрядной установки, что обеспечивает множество каналов разрушения, характерные признаки которых служат идентификаторами и определяются разработанной автоматизированной системой.
- В отличие от существующих методов в разработанном методе идентификации бумажных документов применена процедура кодирования идентификационных признаков метки в виде нанесенного рядом с меткой QR-кода, что позволило при невоспроизводимости метки производить сравнение ее признаков с информацией QR-кода документа-подлинника и тем самым обеспечить его уникальность.

Теоретическая значимость работы:

- 1. Разработанная методика определения угроз безопасности информации системы бумажного документооборота может быть дополнена с учетом специфики работы предприятий и организаций.
- 2. Разработанные технологии определения режимов электроразрядного нанесения метки и выявления ее идентификаторов автоматизированной системой при их дальнейшем развитии могут быть применены при нанесении меток на металлические и неметаллические объекты.
- 3. Разработанные алгоритмы кодирования информации и ее распознавания в виде автоматизированной информационной системы при их дальнейшем развитии могут быть применены к идентификации металлических и неметаллических объектов.

Практическая значимость работы:

Разработанная методика определения угроз безопасности может быть применена в системе бумажного документооборота предприятий и организаций для повышения защищенности информации документов.

Предлагаемый метод идентификации, основанный на сравнении информации QR-кода и метки, нанесенной электрическим разрядом, с помощью автоматизированной информационной системы, может быть использован:

- в системе бумажного документооборота предприятий и организаций для запрета распространения контрафактной и фальсифицированной продукции: метка может быть нанесена на сопроводительные документы на выпускаемую продукцию;
- в банковской сфере: при идентификации ценных бумаг сертификатов, денежных купюр;
- при идентификации документов об образовании, профессиональной деятельности и т.д.

Положения, выносимые на защиту:

- Существующие методики определения угроз безопасности информации в информационных системах характеризуются отсутствием технологий определения актуальных угроз безопасности применительно к бумажному документообороту. Предложенная в работе методика определения угроз безопасности информации бумажного документооборота позволяет на основе модели угроз произвести оценку защищенности бумажных документов и разработать сценарии дальнейшего развития событий.
- Существующие реквизиты бумажных документов являются воспроизводимыми. Это приводит к сложности отличия фальсифицированного документа от подлинного. Предложенные в работе режимы электроразрядного нанесения метки обеспечивают ее невоспроизводимость в силу стохастичности процесса и информативность из-за множества каналов разрушения, идентификационные признаки которых позволит выявлять разработанная автоматизированная система.
- При использовании методов идентификации, основанных на создании уникальных меток с помощью стохастических физических процессов, возникают сложности, связанные с хранением значений признаков меток базы данных должны содержать большой объем их информации. Предложенная автоматизированная система разработанного метода идентификации позволяет произвести кодирование и нанесение выявленных идентификаторов метки в виде QR-кода на документ для выделения его из множества подобных.

Идентификация — «установление тождественности характеристик продукции ее существенным признакам».

Идентификация позволяет решить следующие задачи:

- однозначно определить объект;
- распознать объект по его свойствам;
- группировать объекты по определенным признакам;
- выделить объект из множества подобных.

Для осуществления процесса идентификации необходимо выбрать основные признаки. **Признак** — это объективное отражение свойств объекта. Для преобразования признака в **идентификатор** необходимо соблюсти ряд требований. Он должен обладать следующими свойствами:

- индивидуальностью;
- относительной устойчивостью;
- достаточностью;
- отображаемостью;
- воспроизводимостью признаков;
- выраженностью признаков.

Исследование способов идентификации, использующих стохастические физические процессы для создания индивидуальной метки объекта

- Методы хроматографии или классической органической хромато-масс-спектрометрии, основанные на определении наличия или отсутствия в объектах характерных компонентов-маркеров. Недостаток:
 - возможно добавление или искусственное удаление маркера не эмитентом.
- Маркировка объекта источниками гамма-излучения, наносимыми в виде опознавательного знака. Для распознавания объекта производится регистрация его радиоактивности. Недостатки:
 - обмен веществом между исследуемым объектом и окружающей средой;
 - неопределённость начального изотопного и элементного состава.
- Применение различных физических эффектов:
 - о Измерение характеристики магнитного отклика от нанесенных магнитных материалов, уникальность которой объясняется наличием естественных дефектов в магнитном материале, которые образуются невоспроизводимым образом.
 - о Спекл-структуры, полученные в проходящем свете от специального прозрачного знака. Для идентификации применяется считывающее устройство, состоящее из лазера для формирования когерентного пучка и детектора, расположенного определенным образом для измерения спекл-структуры. Недостаток повышенная хрупкость оптических волокон.

Недостатки:

- трудность обеспечения стабильности проверяемой структуры в течение срока службы объекта;
- требует идеальной впечатываемости, что приводит к значительным затратам;
- возможно отсоединение и прикрепление маркера к другому объекту.
- Метод аутентификации ключа на кредитных картах нанесение тонкого слоя прозрачного материала с наночастицами. Несколько фотонов из считывающего устройства в банкомате излучают на этот слой, фиксируя рисунок их траектории. Недостаток:
 - применим не для всех объектов, в частности, банкнот, ценных бумаг;
- требует наличия специального маркера, содержащего наночастицы, и дорогого устройства лазера, испускающего импульсы когерентного света.

Стохастический электроразрядный процесс

Высоковольтная электрофизика возникла во второй половине XX века благодаря значительным успехам в области высоковольтной импульсной техники.

Электроразрядная механическая обработка представляет собой процесс удаления металла быстродействующей вспышкой разряда между электродами различной полярности, при этом один из электродов прикреплен к заготовке, другой – к инструменту. Применяется в

- машиностроении,
- химико-технологических процессах,
- гидроакустике,
- горнодобывающих отраслях,

- нефтедобывающих производствах,
- силовых процессах строительной индустрии

Возможно управлять эффектом разрушения твердого диэлектрика, увеличивая длину разрядного промежутка, устанавливая оптимальные значения энергии и скорости ее выделения, что впервые было применено для разрушения горных пород.

Шкилевым В.Д. было предложено использовать электрический разряд для создания невоспроизводимой метки в электрических и диэлектрических материалах. Действие электрического разряда носит стохастический характер, невозможно его попадание в определенную точку. Поэтому каждый раз можно получать разнообразный набор пятен, а, следовательно, меток.

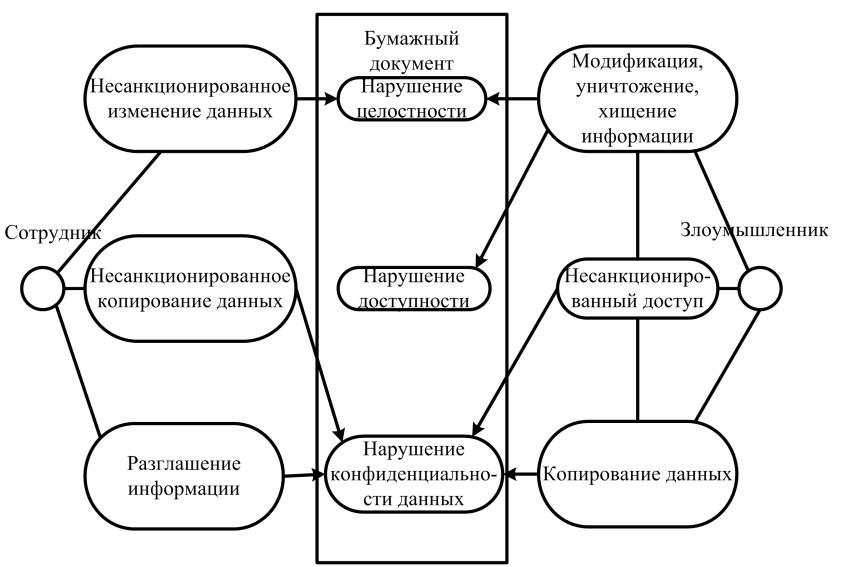
Определение риска реализации угроз безопасности информации бумажного документооборота

Риск реализации угрозы:

$$P_{p.y.} = (1 - Y_3) \cdot \Pi_H \cdot Y \cdot 100\%,$$

где $\Pi_{\rm H}$ — потенциал нарушителя, ${\rm Y_3}$ — уровень защищенности системы бумажного документооборота.

Потенциал нарушителя является функцией нескольких переменных:

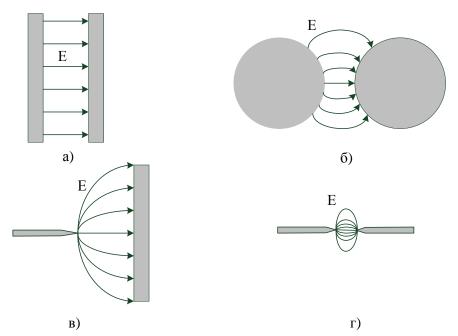

$$\Pi_{\mathrm{H}} = f(\mathrm{M}, \mathrm{T}_{\mathrm{3}}, \mathrm{K}_{\mathrm{T}}, \mathrm{3}, \mathrm{B}_{\mathrm{d}}, \mathrm{O}_{\mathrm{H}}),$$

где M — уровень мотивации злоумышленника, T_3 — затрачиваемое нарушителем время для идентификации и использования уязвимости системы, $K_{\rm T}$ — техническая компетентность нарушителя, 3 — знание проекта и информационной системы (о системе защиты документооборота), $B_{\rm д}$ — возможность доступа к информационной системе (системе документооборота), $O_{\rm h}$ — оснащенность нарушителя для реализации угрозы.

Значения составляющих потенциала

Показатель возможностей нарушителя		Значения при идентификации уязвимости	Значения при использовании уязвимости
Затрачиваемое время	< 0,5 час	0	0
	< 1 день	2	3
	< 1 месяц	3	5
	> 1 месяц	5	8
Техническая компетентность нарушителя	Непрофессионал	0	0
	Специалист	2	3
	Профессионал	5	4
Знание проекта и информационной системы	Отсутствие знаний	0	0
	Ограниченные знания	2	2
	Знание чувствительной информации	5	4
Возможность доступа к информационной системе	< 0,5 час или не обнаруживаемый доступ	0	0
	< 1 день	2	4
	< 1 месяц	3	6
	> 1 месяц	4	9
	Не возможно		
Оснащенность нарушителя	Отсутствует	0	0
	Стандартное оборудование	1	2
	Специализированное оборудование	3	4
	Оборудование, сделанное на заказ	5	6

Модель угроз безопасности информации бумажного документооборота


Оценка возможностей повышения защищенности информации бумажных документов

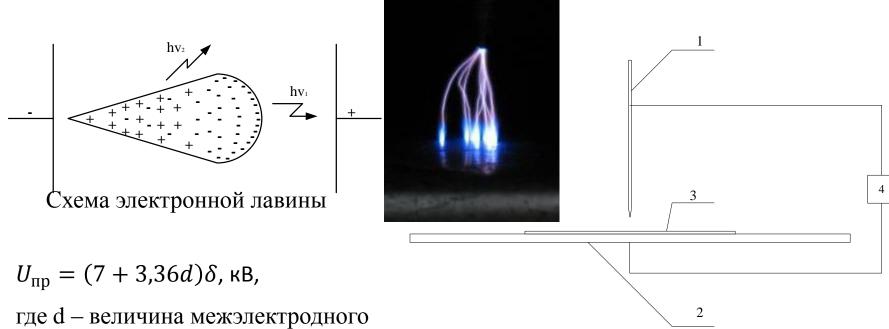
Показатели потенциала в момент внедрения нового метода:

- затрачиваемое время -0 (было 8);
- непрофессионал -0 (было 9);
- отсутствие знаний -0 (было 9);
- невозможность доступа к системе защиты -0 (было 9);
- отсутствие оборудования -0 (было 7).

Диапазон значений	Потенциал нарушителя	
<10	Потенциал недостаточен для реализации угрозы безопасности	
10-17	Базовый (низкий)	
18-24	Базовый повышенный (средний)	
>24	Высокий	

Выбор формы и материала электродов. Определение длины межэлектродного промежутка

Влияние конфигурации электрического поля на его напряженность: а) однородное поле; б) слабонеоднородное поле; в), г) резконеоднородное поле

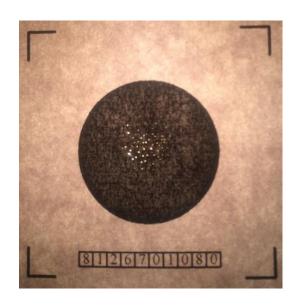

Материал электрода должен быть выбран, исходя из следующих требований:

- высокая эрозионная стойкость;
- способность к обеспечению стабильности процесса электроразрядной обработки;
- возможность применения несложного технологического процесса для получения электрода требуемой формы и необходимых размеров;
- относительно небольшая стоимость электрода.

Для проведения экспериментов на электроразрядной установке была назначена длина межэлектродного промежутка, равная 1 см. При выборе были учтены требования:

- получение максимально возможной электрической проводимости воздушного диэлектрика;
- расстояние между электродами должно обеспечить разрушение твердого диэлектрика бумажного носителя.

Механизм нанесения невоспроизводимой метки на бумажный носитель


где d — величина межэлектродного промежутка, см

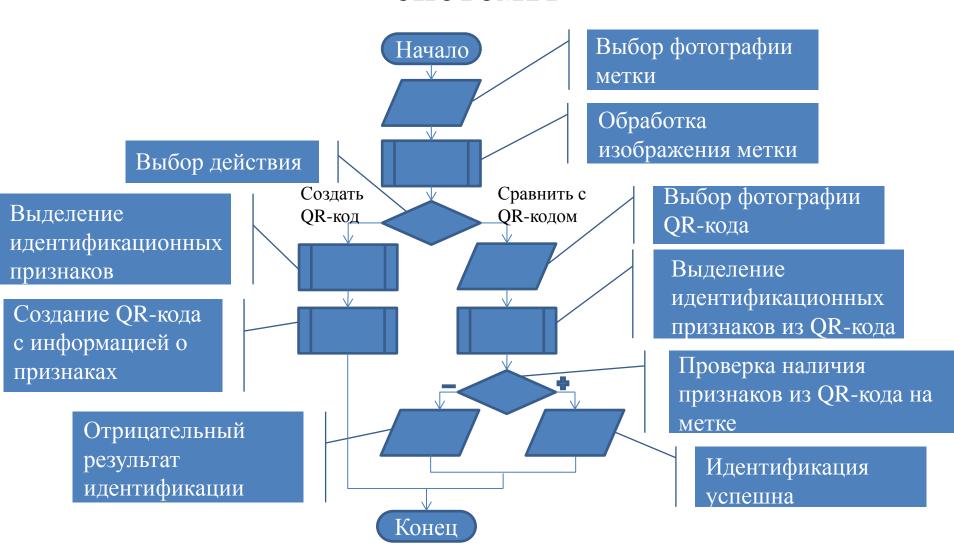
 δ - относительная плотность газа при давлении p (мм рт. ст.) и абсолютной температуре T (в градусах Кельвина), отличных от нормальных p_0 и T_0 (760 мм рт. ст. и 293°К), вычисляется по формуле:

$$\delta = \frac{p}{p_0} \cdot \frac{T_0}{T} = \frac{p}{760} \cdot \frac{273 + 20}{T} = 0.386 \cdot \frac{p}{T}.$$

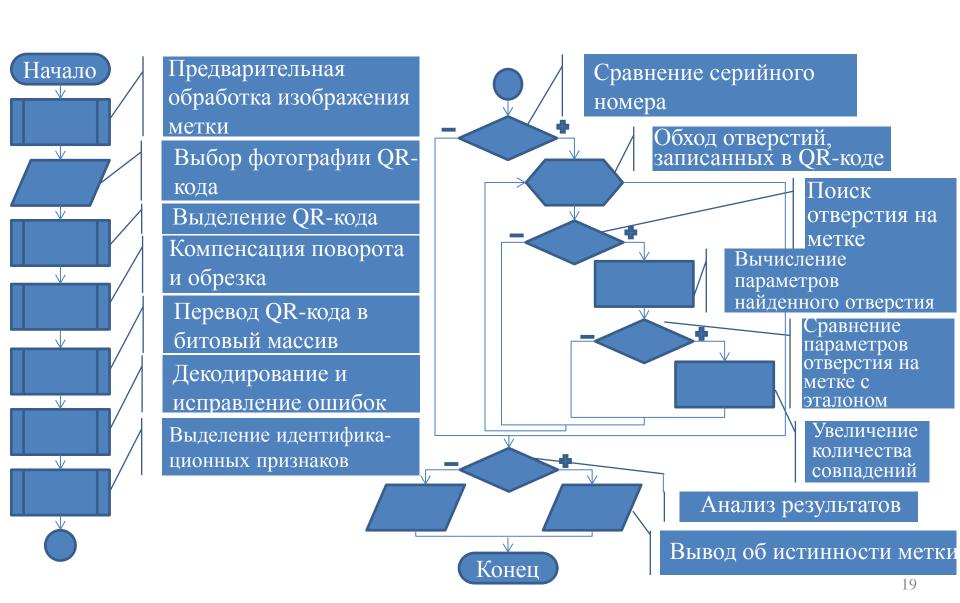
Схема нанесения невоспроизводимой метки: 1, 2 — электроды, 3 — бумажный документ с нанесенной мишенью и индивидуальным кодом (серийным номером), 4 — высоковольтный источник

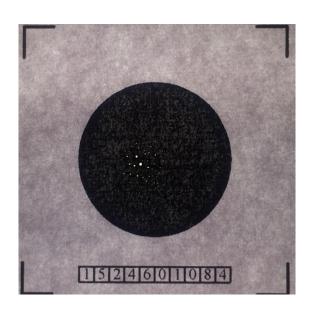
Кодирование идентификаторов метки

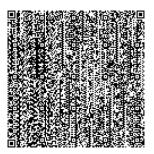
В качестве идентификаторов метки были выбраны:

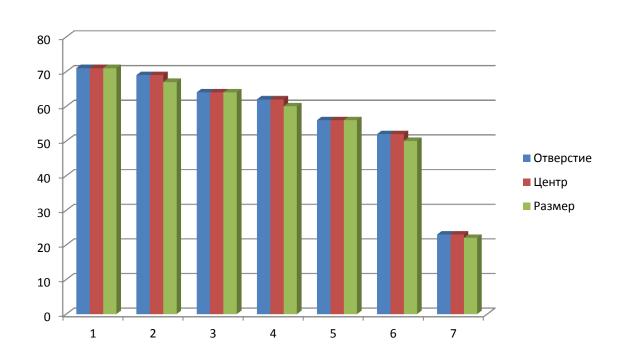

- ее индивидуальный код серийный номер;
- количество прожженных электрическим разрядом отверстий на мишени;
- координаты центров масс отверстий;
- размеры отверстий.

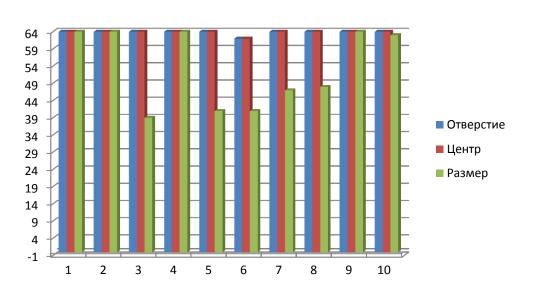
Преимущества QR-кода:

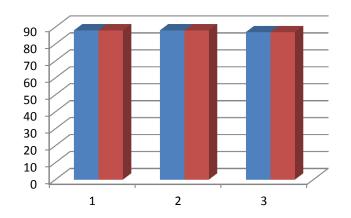

- автономность считывания кода;
- возможность черно-белой печати;
- возможность осуществления оптимизации кода при существующих технологиях печати;
- хранение большого объема данных при максимальном уровне коррекции ошибок;
- существование кодов коррекции ошибок;
- открытость формата;
- поддержка индустрией.

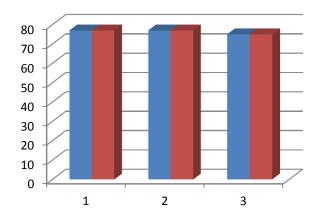

Общий алгоритм работы автоматизированной системы



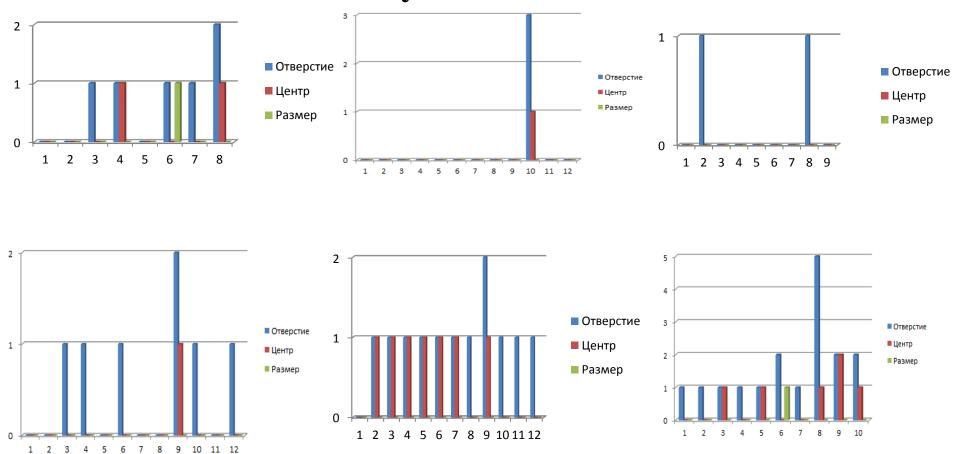

Распознавание метки по QR-коду

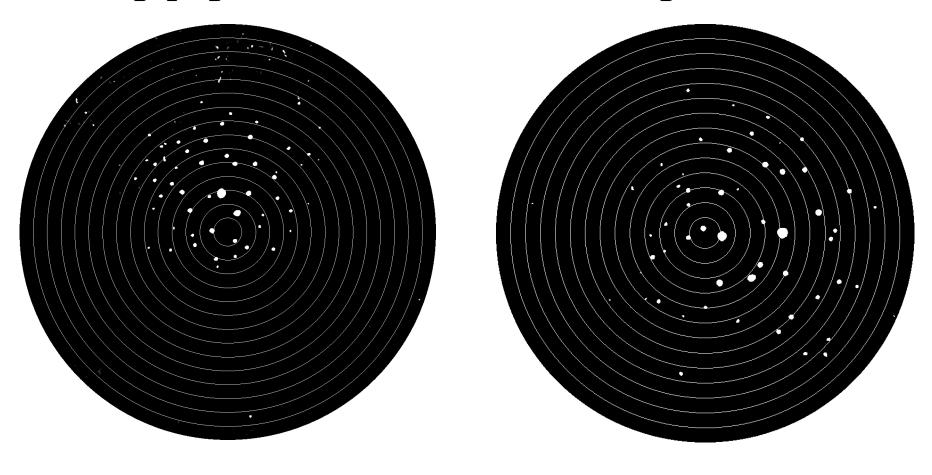

Анализ результатов сравнения изображений меток с QR-кодами их эталонов





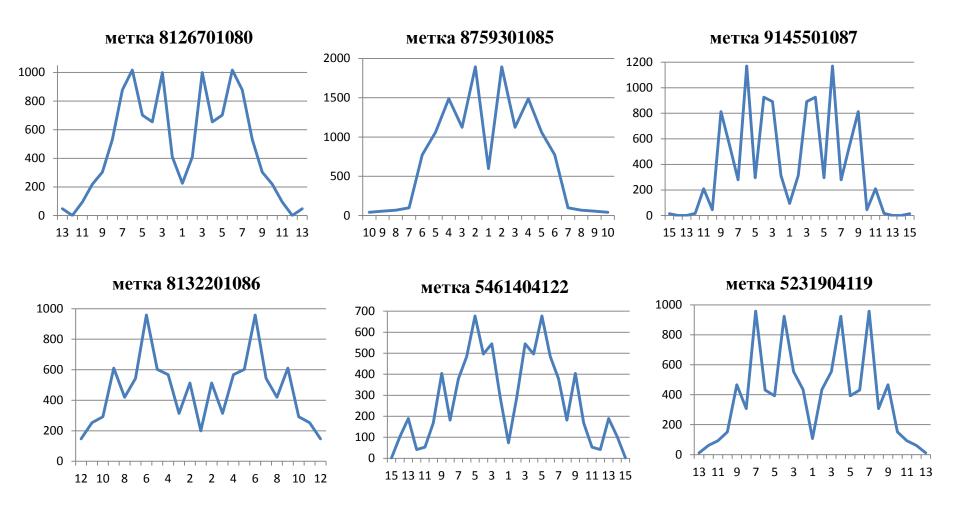
Анализ влияния факторов внешней среды на процесс идентификации метки, полученной стохастическим электроразрядным способом


Влияние освещенности

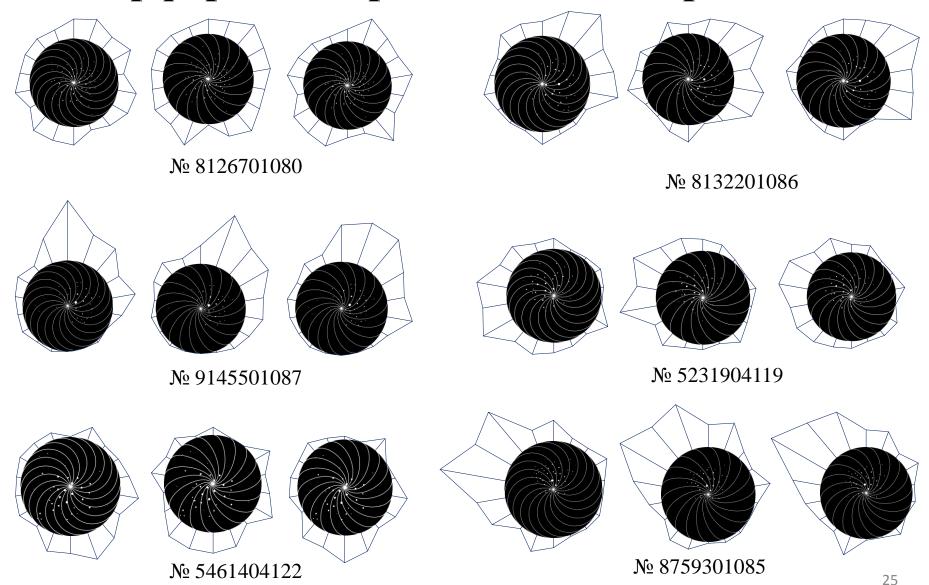


Влияние периода эксплуатации

Анализ результатов работы автоматизированной системы по выявлению подлинности документа из совокупности объектов



Анализ характера распределения перфораций в кольцевом направлении



а) б) Нанесение концентрических окружностей на невоспроизводимых поверхностях: а) № 8759301085; б) № 8132201086

Характер распределения площадей перфораций в кольцевом направлении

Анализ характера распределения перфораций в радиальном направлении

Основные результаты диссертации:

- 1. На основе проделанной систематизации знаний в области существующих способов идентификации для повышения защищенности информации бумажных документов предложено производить их идентификацию по дополнительному реквизиту уникальной метке и коду, хранящему информацию метки и важные данные документа-подлинника.
- 2. Для определения актуальных угроз безопасности информации бумажного документооборота применена методика, позволившая разработать модель угроз и произвести оценку риска реализации угроз безопасности информации.
- 3. В качестве дополнительного реквизита бумажных документов применена невоспроизводимая метка, нанесенная стохастическим лавинно-стримерным разрядом при рассчитанных режимах работы электроразрядной установки, что обеспечивает множество каналов разрушения, характерные признаки которых служат идентификаторами и определяются разработанной автоматизированной системой.
- 4. Применена процедура кодирования значений идентификационных признаков метки, выявленных разработанной автоматизированной системой, в виде нанесенного рядом с меткой QR-кода, что позволило при невоспроизводимости метки производить сравнение ее признаков с информацией QR-кода документа-подлинника и тем самым обеспечить его уникальность.
- 5. Результаты проведенных экспериментальных исследований доказали повышение защищенности информации бумажного документа и возможность применения предлагаемого метода к идентификации бумажных документов. Автоматизированная система производит идентификацию метки независимо от периода эксплуатации документа и влияния факторов внешней среды.

Спасибо за внимание