Flat Chart Technique for Embedded OS Testing

Victor V. Nikiforov and Sergey N. Baranov

St. Petersburg Institute for Informatics and Automation of the Russian Academy of

Sciences (SPIIRAS)
{nik,snbaranov}@iiras.spb.su

Abstract. A special language to define the respective testing task logic and the concept
of flat charts to efficiently perform an embedded OS execution-based testing presented.

To avoid heavy interpreting of text strings during test runs, strings are pre-processed
and converted into a regular array form.

Functional testing checks the correctness of the OS behavior and finds defects in:
e cxecution of basic OS directives invoked from tasks and ISRs;
e processor switches among threads;
e data and signal transactions;
e crror handling routines.

Timing testing measures the following timing data on OS execution:
e local time — execution time of a particular OS directive;
e global time — total execution time of the whole application;

e latency — time interval between the moment when the interrupt occurred and the
moment when the interrupt started to be processed by a respective ISR.

Observed Testing Rules:

e focus — each test checks only one OS feature under particular conditions with only
two possible outcomes: pass or fail;

e repeatability — same behavior at each test execution;

e non-interference — no intrusion into OS functioning (no access to OS variables,
command lines, or structures);

e black-box approach — no knowledge/assumptions on the OS inner structures.

The Flat Chart Technique ensures repeatability of the test execution order under the
following constraints:

e test utilities in the test application| e all tasks are generated statically;
are simple and small in number; e task priorities are static;
e tests contain invocations of only OS| e no two tasks have the same
service operators and test utilities; priority.
The Test_Step structure may be formally defined as:
/typedef struct Test_Step { union StepArg {)
int Taskld; int IntArg;
void (* UtilServ) (); char* StringArg;
StepArg Arg_1; void (* FunArg) ();
StepArg Arg 2; TestStep; ;
_ StepArgArg_2;] P Koo)

Example: Three tasks t;, 1,, and 73, sharing three global resources g;, g,, and g;.

Profile of the ThreeTasks Application

The Task Execution Order

£1
R mtu
B 10 23)EIE(—
4
2 L

<— 51 —>

T) —

io bl

Ty - e w—

E{'— &1 :ﬁ i -ﬁ &

T — — 1
3
—['ITI'ITFHTI‘I'I'I'I'I‘ITI'I'I'I'I'HTI'I'I'I‘[TITI'I_I

0 10 20 30

Flat chart: Rows specify the execution
order, columns reflect the task priorities

1 2 3
TestStep ThreeTasks = {
1) ' 3, &ActivateTask, 3,0
2) 3, &Lock, 1,0
3) 2 &ActivateTask, 2, 0
4) 2, &Lock, 2, 0
5) 1 &ActlvateTask 1,0
6) 1 &Lock 1,0
7) ' 3 &Lock, 2, 0
8) 2 &Unlock, 2, 0
9) | 3 &Unlock, 1,0
10) 1 &Lock 1,0
11) 1 &EndTask 1,0 }

The workflow of the test interpreter

| those of I|nel

Flat chart | :’" Configure
in C or :
assembler : File
&T | end?
I
Preprocess '
l i J= GetNext
Threaded E
code of ~
the flat '
chart ;
J : Perform test
; actions and
I
1

~-- Terminate

Developing Scenario Tests with Flat Charts
Each scenario test realizes a sequence of actions based on some underlying idea.
A flat chart to check a message exchange mechanism which provides
message pointer passing from an ISR to a task or from one task to another. The
variables mesl ptr, mes2_ptr, and mes3_ptr are message pointers.
1 2 3

Test$tep :gl\/lsg'lé*ravel [1= {

1) 1,&CallGetMsg, &mesl_ptr, O // No msg, TASK_1 is waiting
2) i 2,&Resumelsr, 0, 0 // Interruptis simulated

3) :1,&CallPutMsg, TASK_3, TEST_MSG // Send msg to TASK_3

4) 2,&CallGetMsg, &mes2_ptr, 0 // No msg, TASK 2 is waiting
5) 3,&CallGetMsg, &mes3 ptr, 0 // TASK_3 received Msg

6) i | 3,&CallPutMsg, TASK 1, &mes3_ptr // Activate TASK 1

7) ;:l,&CiaIIPuétMsg, TASK 2, &mesl_ ptr // TASK 2 becomes ready

8) 1,&CallTaskEnd, 0O, O // Activate TASK 2

9) i 2,&Check_Equal, &mes2_ptr, TEST_MSG // Is msg the same

10) | 2,&End_of_Test, 0, O // as TEST_MSG?

11) 0,&End_of scheme, 0,0 }

This scenario of message passing between tasks consists of the following events:
1) Task 1 tries to get a message & becomes suspended as there's no message yet;
2-3) ISR passes the message TEST _MSG to Task_3 not ready yet to receive it;

4) Task 2 tries to receive a message which is absent and becomes suspended;

5-6) Task 3 receives the message TEST_MSG sent previously by the ISR and resends it
to the suspended Task 1 which was waiting for it;

7-8) Task 1 resends the message to Task 2 and frees the processor through invoking
the service procedure TaskEnd();

9) Upon termination of Task 1 the message received by Task 2 is compared to
TEST _MSG - the two message pointers should coincide.

10-11) Termination of the test run.

Loops in Flat Charts: Two New Elements &LoopStart and &LoopEnd

1 2
// -E—-—- Flat chart with a single loop ------
TestStep’MessQueue []= {

/] -+ The message queue with 10 messages is formed for Task_2

1) O &I_oopStart &cycle_var, 10

2) :1 &CallPutMessage, Task_2, &mesl_ptr // Repeat msg send
3) 0, &LoopEnd, &cycle_var, 0

4) i1, &CallTaskEnd, 0, 0 // Task_1 terminates
// --L- Thé message queue of 10 messages is consumed by Task 2

5 O &LoopStart &cycle var, 10

6) 2,&CallGetMessage, &mes2_ptr, 0 // Repeat msg receive

)

)
7) O &LoopEnd &cycle var, 0
8) O&End _of scheme, 0,0 }

Testing the Error Handling Service with the &CheckErrData Element

/] -—-- Flat chart for error service testing ------
TestStep MemRegErr [] = {
/] ... Steps from Step_01 to Step_i exhaust all memory resource
i+1) 1,&GetMemory, 30, &mem_ptr // Step_i+1
0, &CheckErrData, NO_MEMORY, O
Y Remaining elements of the MemReqErr array

0,&End_of scheme, O, 0 }
Task_1 requires 30 memory blocks which causes an error because the memory resource
becomes exhausted. An error shall invoke a special thread of actions which enters the
flat scheme interpreter body. The interpreter finds the respective auxiliary line in the flat
chart and performs the CheckErrData() utility assuming that the OS reports the
NO_MEMORY error code into the error handling block.

Automated Test-Run Sessions: Local/Global Time Measurement
The precision of OS time service directives i1s not appropriate for local time
measurements; therefore, direct access to the hardware time register is needed. Test
actions for local time measurement are: (A) read the timer register (take the time before
the action); (B) call the UtilServ() utility for executing the specified action; (C) read the
timer register again (take the time after the action); (D)store the results of measurement
and perform log operations with these data.

Global time measurements are less precise; therefore, the OS time service may used:

1 2
TestStep nghPrlorTaskSW|tch|ng [1= {
1) ;1 &CaIISysTlme &start_time, 0 // Store the start time
2) EO, &qupStart, &cycle var, 1000 // Initialize the loop
// ----';-- The fset of operations for measurements ------
3) 51,&Ca!IGetMessage, &mesl ptr, O // Suspend Task_1
4) 2,&CallPutMessage, &mes1_ptr, 0// Send msg to Task_1
5) 0, &LadopEnd, &cycle_var, 0 // Terminate loop operations
6) El,&Ca:IISysTime, &finish_time, O // Store the end time
7) i0,&LogGlobalTime, 0, 0 // Store the result
8) :O,&En’d_of_scheme, 0,0 } // End of scheme

The number N of measurement cycles depends on the relation between the precision
AT, of the SysTime() mechanism, duration T. of one application cycle, and duration T,
of the LoopStart() and LoopEnd() operations (assuming they are equal). The larger the
value of NX(T¢/(AT,+Tp)), the more precise measurement results will be obtained.

Thus, the flat chart technique provides a convenient form for understanding and
describing tests for global time measurement.

Latency Testing. The simplest statistical way of latency measurement assumes
simultaneous execution of two logically isolated components: (A) a benchmark
application with a set of interacting tasks; (B) a dedicated ISR to calculate difference
between moments of the measurement interrupt and of the start of its processing.

With this approach, a single result L, of measuring the latency value will be less
than or equal to the maximal possible latency value L,. The difference d=L,L,
represents the inaccuracy of result of a single latency measurement.

To achieve higher accuracy of latency measurement, single measurements are
performed n times and the maximum of L, 1s considered as the final result. The required
accuracy of the final result is achieved with the probability not less than 1—-(1-AUT)".

Measuring Code Coverage. The technique is based on using codes of prohibited
TRAP instructions and is realized with another designated vector of TR AP-interrupts.

Enhancements of the Flat Chart Technique. For real asynchronous action threads
(as required for latency measurements), methods beyond the flat chart scheme should be
used. The flat chart technique may be further extended to distributed OS testing. In this
case, a test application is a program with real parallelism and if quasi-asynchronous
execution turns out to be suitable for particular testing, then the only needed extension
1s refinement of action flows naming. Otherwise, a separate flat chart should be
developed for each physical processor with additional means for cross-referencing.

Conclusions. The flat chart technique gives an efficient way to develop test suites
for embedded OS execution-based testing with well-structured and understandable
descriptions of the test applications with tasks and ISRs for parallel execution. It allows
to check the correctness of implementation of basic OS mechanisms — data and signal
exchange among action threads, run-time allocations of memory, special structures, and
processor’s time and to perform measurements of local/global time, OS latency, and
code coverage.

References

[1] L1Q., Yao C. Real-time concepts for embedded systems. CRC Press (2003).
[2] Thane H., Hansson H. Testing distributed real-time systems.
Microprocessors and Microsystems 24(9), 463—478 (2001).

[3] Desikan S. Software testing: principles and practice. Pearson Education
India (2006).

[4] Myers G.J., Sandler C., Badgett T. The art of software testing. 3nd edn.
John Wiley & Sons New York (2011).

5] Hailpern B., Santhanam P. Software debugging, testing, and verification.
IBM Systems Journal 41(1),4-12 (2002).

(6] Brodie L. Thinking Forth. Punchy Pub (2004).

7] Biswal B. N. Pragyan N., Durga P. M. A novel approach for scenario-based
test case generation. In: International Conference on Information Technology
2008 (ICIT'08). IEEE, (2008).

[8] Lefticaru R., Florentin I. Automatic state-based test generation using
genetic algorithms. In: International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing 2007 (SYNASC). 178-195. IEEE (2007).

