Types, terms and proofs in categorical attributed
graph transformation

Bertrand Boisvert, Louis Féraud, Sergei Soloviev!

IRIT - Université de Toulouse - ACADIE/MACAO

SPIIRAN, St.-Petersburg, Decemeber 9, 2011

1Part of this research has been supported by the Climt project,
ANR-11-BS02-016-02

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

@ Attributed graphs

© Categorical graph rewriting
© Our approach

© Examples

© From terms to proofs

B. Boisvert, L. Feraud, S. Soloviev

A-terms in attributed graph transformation

Attributed graphs

Plan

@ Attributed graphs

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Attributed graphs

Attributed graphs

Attributed graph =
@ Structural part

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Attributed graphs

Attributed graphs

Attributed graph =
@ Structural part
@ Attributes

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Attributed graphs

What we would like to do with graphs:

@ Build graphs (example: by using graph grammars)
@ Study properties of graphs (examples: presence of cycles?)
@ Transform graphs (example: by using graph grammars)

@ Study properties of graph transformations (example: does a
transformation preserve connexity?)

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Attributed graphs

What we would like to do with graphs:

@ Build graphs (example: by using graph grammars)
@ Study properties of graphs (examples: presence of cycles?)
@ Transform graphs (example: by using graph grammars)

@ Study properties of graph transformations (example: does a
transformation preserve connexity?)

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Attributed graphs

Graph rewriting systems

@ G: host graph

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Attributed graphs

Graph rewriting systems

[@ G: host graph
L —= R @ L~ R: transformation rule
T e L: Pattern to modify
@ ~» R: transformation instructions

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Attributed graphs

Graph rewriting systems

SN @ G: host graph
L R R o L ~» R: transformation rule
! e L: Pattern to modify
@ ~ R: transformation instructions

o L --» G: matching

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Attributed graphs

Graph rewriting systems

(]

G: host graph
L ~ R: transformation rule

e L: Pattern to modify
@ ~» R: transformation instructions

(]

(]

L --» G: matching

(]

= computation process

L A~ R*’ Computation
IS o process

AT > |

(]

H: result graph

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Attributed graphs

Graph rewriting systems

(]

G: host graph
L ~ R: transformation rule

e L: Pattern to modify
@ ~» R: transformation instructions

(]

(]

L --» G: matching

(]

= computation process

L A~ R*’ Computation
IS o process

—H
G = LR e T

L, Ry,

Ly" =3 R }

(]

H: result graph

(]

a graph grammar

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Attributed graphs

Existing graph rewriting systems

@ Node remplacement approaches
o NLC
o NCE
o edNCE
o ...
@ Edge remplacement approaches

o ...

o Categorical approaches

o Double Pushout
o Simple Pushout
o ...

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Categorical graph rewriting

© Categorical graph rewriting

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Categorical graph rewriting

Why do we use category theory?

@ why not?

@ formal and abstract language

@ some categorical constructions represent gluing and deletion
(Pushout)

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Categorical graph rewriting
How to create a categorical graph rewriting system?

1/ Define a category

@ Objects: attributed graphs

@ Arrows: attributed graph morphisms

2/ Define graph Transformation rules

@ described by one or more attributed graph morphisms

3/ Describe how to do the computation of a rule application

@ by computation of canonical constructions (Pushouts, ...)

L
d
G

>R
/ \Li
> H

HI
10/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Categorical graph rewriting

Two main approaches: Double pushout & Single pushout

Double Pushout Single pushout

r

L i K r R L—R
i (PO) i*
i (PO1) I (PO2) i*
G D H S—= H

* r*

. @ partial morphisms
@ total morphisms

@ one pushout
@ pushout complement & pushout .

@ application conditions
not necessary

@ application conditions

11/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Categorical graph rewriting

Categorical attributed graph rewriting systems

Classical approaches

@ representation of attributes with X-algebras

@ same representation for structural part and attribute part

4

Limitations of approaches based on X -algebras

@ no functional attributes

@ combinatorial explosion for non trivial computations

o difficulties for implementation

12/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Our approach

© Our approach

13/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Our approach
Our goal

Pragmatic approach

@ reuse the well developed SPo approach on structural part
@ improve attribute part

@ use different theoretical frameworks for structure and
attributes

@ unify the two parts in category theory

14/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Our approach
Typed A-calculus with inductive types

A-calculus

@ simply typed A-calculus

@ with inductive types
9 pairing

@ terminal object

4

Inductive types examples

@ Nat = Inda{0 : a,
Succ : a0 — a}
o T, = IndafLeaf : a,
Node : « — oo — a}
o T, = Inda{Leaf : a,
Succ, 1 a — a,
Lim: (Nat — o) — a}

V.
15/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Our approach

Inductive types

Benefits of using inductive types

@ more expressive than ¥ -algebras
@ recursion operators

@ good reduction properties:

@ strong normalization
o local confluence

16/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Our approach

1/ Define a category: objects = finite attributed graphs

f< Ax.x: Int Int, |
Struture of a graph G PRl |

@ finite sets of vertices and edges

@ source and target functions

@ total order on vertices U edges

17/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Our approach

1/ Define a category: objects = finite attributed graphs

f< Ax.x: Int Int, |
Struture of a graph G PRl

@ finite sets of vertices and edges
@ source and target functions

@ total order on vertices U edges

<

Attributes of a graph G

@ one typed A-term for each
element

17/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Our approach

1/ Define a category: arrows = attributed graph

morphisms

<"Key": Str, <"Key": Str,
1: Nat> 1: Nat>

18/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Our approach

1/ Define a category: arrows = attributed graph
morphisms

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Our approach

1/ Define a category: arrows = attributed graph
morphisms

@ partial graph homomorphism;

@ attribute dependency relation;

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Our approach

1/ Define a category: arrows = attributed graph

morphisms

A x:(Str=xNat).x :(StrxNat) — (StrxNat;

A x:(Natx Nat). Ay:(Strx Nat).<p X, (g X)+(p ¥)>(Str xNat) ~ (NatxNat) - (Natx Nat >

@ partial graph homomorphism;
@ attribute dependency relation;

@ \-terms defining computations on attributes;

B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Our approach
2/ Define graph transformation rules

Transformation rules

o transformation rule given by one morphism L = R

@ embedding given by one morphism L NV

19/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Our approach

3/ Describe how to do the computation of a rule

application

Weak pushouts exist in the category Gr'
Straightforward

20/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

© Examples

21/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Computation of n!

@ v

erms

add = Ax.Rec"¥t™ Nat(x)(/\u/\v.succ(v))

mult = /\X.RecNat_'Nat(O)(/\u/\v.(Add x v))

2
) x! = RecNat*}Nat(succ(O))()\u)\v.(Mult u v))x

22/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Managing infinity with functional attributes

T, = Inda{Leaf : a,
Suce, : a — a,
Lim: (Nat — a) — o}

Example: one w-tree defined by Lim(f)

f0) (1) f(2) £(i)

23/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Managing infinity with functional attributes

Rule to select pair branches

d = RecNat=Nat(0)(\x.\y.Succ(Succ(y)))

¢ = Rec™ = Tw(Leaf)(AxT .Succ,)(Au.v.(ud))

¢' = Rec™ = Tw(Leaf)(Ax".Succ,)(Au.Av.(vd))

V.
24/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Managing infinity with functional attributes

Computation on an attribute: selecting pair branches

9,

f(0) (1) f(2) (i) f(0) f(2) f(4) f(2i)
?

f(0) (1) f(2) (i) Pf0) ¢E@) ®fa) azf(zmm

25/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Information balance between attributes and structure

Inductive type for binary trees
T, = Inda{Leaf : a,
Node : &« — o — a}

4

Graph grammar

Rule 1:

Ax.match x with Node(l,r) => |

Rule 2:

26/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Information balance between attributes and structure

Example: application of R2;R2;R2;R1;R1;R1;R1 on G

G — H

Node(Node(Leaf,Node(Leaf, Leaf)),Leaf)

27/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Differences between our approach and other approaches
Structural part
@ same that single pushout

Attribute part

more complex attributes (functional attributes)

more complex computation functions

better expressivity

°
o
@ guaranteed strong normalization and confluence
o flexibility

28/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

© From terms to proofs

29/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

More on attribute part

Our framework will hold if:

@ instead of using A-terms only (as computation functions)
@ we shall use proof-schemas

@ and combine computation and proof

30/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

More on attribute part

A partial proof is a tree with the following properties:

© Each node is labelled with a sequent and the rule of inference
which is applied to this sequent (backwards) to produce the
node’s children (and the children of course must be the
premises of this rule).

@ The final sequent (or the goal) is the sequent at the root of
the three.

© If the leaf is labelled by an axiom, then it is called complete.

@ If no rule of inference is specified for a leaf, then the leaf is
open.

@ A proof is a partial proof with no open leaves.

31/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

More on attribute part

The notion of proof-schema is obtained when we permit to use
meta-level sequents instead of sequents in partial proofs.

A meta-level sequent is an abstraction of an object-level sequent
which may contain meta-variables.

| A\

Remarque

Not all elements of a meta-level sequent need to be metavariables,
There may be metavariables of different kinds, e.g., for terms,
contexts (lists of typed variables), even for variables (as an the
axiom schema above).

32/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

© Each node is labelled with a meta-level sequent and the rule
of inference which is applied to this sequent (backwards) to
produce the node’s children (and the children of course must

be the meta-level sequents matching the premises of this rule).

@ The final meta-level sequent (or the goal) is the meta-level
sequent at the root of the three.

© If the leaf is labelled by an axiom schema, then it is called
complete.

@ If no rule of inference is specified for a leaf, then the leaf is
open.

@ A proof schema is a partial proof schema with no open leaves.
. o

33/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Proof-schema in predicate calculus:

*
LIE/ABFE
x T,[t/y]JA,AFVx.B
[F3yA T,3y.AAFVYxB
AR Vx.B

Cly

(cut)

34/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Proof-schema in simply typed A-calculus:

*

* x:AFt:B |

T-s:ATHM:At:A— B
N-(x:At)s: B

abstr)

(app)

35/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

@ Now, instead of taking lambda-terms as attributes we may
take judgements (sequents).

@ They may include lambda-terms.

@ Instead of computation functions, we may take proof-schemes.

36/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

More examples

Permutation of rules (Kleene-style). Let us consider two rules in
propositional calculus:

rAFB

TrAS B Eht)

and
M+=C I,D, F2|—E

r,C—D,TFE (=

Let us consider first the schema where (— —right) is applied first.
It is to notice that we have to consider the premise of (— —right)
more “finely structured” than in case when each rule schema is
taken separately:

— left).

37/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

More examples

l,D,T2,AFB
heEC In,D,IFA—B
r,C—D,ToFA—=B

Permutation of two inferences gives:

MeEC Ir,D,I,AF-B
Fl,C—>D,F2,AI—B
Fl,C—>D,F2|—A—>B'

38/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

On the level of graph structure (with sequents as attributes) this
may be seen as a transformation

39/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

“Distant links” in derivations.

Let us consider (for simplicity) the derivation d of the following
form:

r[t/y]A, A+ B
[L3yA Al B

I, 3A, A B/

40/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

“Distant links"” in derivations

If we keep a “long distance” link in the derivation, we may
formalize the rule that permits to return to [t/y]A from JyA in one
step.

41/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Future work

Study classical Properties
@ local confluence
@ parallelism

@ critical pairs

4

Implementation

@ DPoPb implementation in haskell language

@ implementation of our new approach

Representation of proofs
@ proof schemes as attributes and computation functions

42/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

Questions

43/4 B. Boisvert, L. Feraud, S. Soloviev A-terms in attributed graph transformation

	Attributed graphs
	Categorical graph rewriting
	Our approach
	Examples
	From terms to proofs

