Уфимский Государственный Авиационный Технический Университет Кафедра Вычислительной Техники и Защиты Информации

Подход к обнаружению вторжений на основе модели иммунной системы и иммунокомпьютинга

Вадим Д. Котов

Содержание

Информатика и компьютерные технология

- 1. Ссылки
- 2. Структура иммунной системы
- 3. Приобретенный иммунитет
- 4. Иммунный ответ по клеточному типу
- 5. Отрицательный отбор
- 6. Иммунный ответ по гуморальному типу
- 7. Иммунная сеть
- 8. Искусственные иммунные системы и иммунокомпьютинг
- 9. Алгоритм отрицательного отбора.
- 10. Аффинность
- 11. Модель костного мозга
- 12. Алгоритм клональной селекции
- 13. Классификация систем обнаружения вторжений
- 14. Модель иммунной системы для обнаружения вторжений
- 15. Formal Immune Network
- 16. Классификация с помощью иммунной сети
- 17. Иммунокомпьютинг в обнаружении вторжений
- 18. Предлагаемый подход
- 19. Представление данных
- 20. Расположение датчиков в сети
- 21. Эксперименты
- 22. Результаты
- 23. Сравнение с классической иммунной моделью
- 24. Выводы

Ссылки

Информатика и компьютерные технология

- **D. Dasgupta, L. F. Nino**, *Immunological Computation. Theory and Applications*. CRC Press, 2009.
- **A. O. Tarakanov,** "Immunocomputing for Intelligent Intrusion Detection" in IEEE Computational Intelligence Magazine, May 2008, pp. 23-30.
- **A. O. Tarakanov**, "Mathematical Models for Intrusion Detection by Intelligent Immunochip" in CCIS (LNCS), vol. 3630, pp. 510-519, 2005
- **A. O. Tarakanov, V. A. Skormin, S. P. Sokolova**, *Immunocomputiong: Principles And Applications*. New-York: Springer, 2003
- **J. Kim, P. Bentley**, "An Artificial Immune Model for Network Intrusion Detection" in 7th European Congress on Intelligent Techniques and Soft Computing (EUFIT'99), 1999
- **J. Kim, P. Bentley**, "The Human Immune System and Network Intrusion Detection". in 7th European Congress on Intelligent Techniques and Soft Computing (EUFIT'99), 1999
- E. Carter, J. Hogue, Intrusion Prevention Fundamentals. Cisco Press, 2008.
- DARPA Intrusion Detection Evaluation, Available: http://www.ll.mit.edu
- **V. D. Kotov, V. I. Vasilyev** "Artificial Immune Systems Based Intrusion Detection System" Proc. of the 2nd International Conference on Security of Information and Networks, 2009, pp. 207-212.
- **D. Dasgupta** (ed) Artificial Immune Systems And Their Applications, Springer-Verlag, 1999.
- **De Castro L. N., Timmis J.** Artificial Immune Systems: A New Computational Intelligence Approach, Springer-Verlag, 2002.
- Warrender C., Forrest S., Pearlmutter B. Detecting Intrusions Using System Calls: Alternative Data Models. Proc. of 1999 IEEE Symposium on Security and Privacy, pp. 133-145, May 1999.
- Forrest S., Perelson A. S., Allen L., Cherukuri R. Self-nonself discrimination in a computer, Proc. of 1994 IEEE Symposium on Research in Security and Privacy, pp. 202-212, May 1994.

Структура иммунной системы

Информатика и компьютерные технология

12.03.2010

Кожа

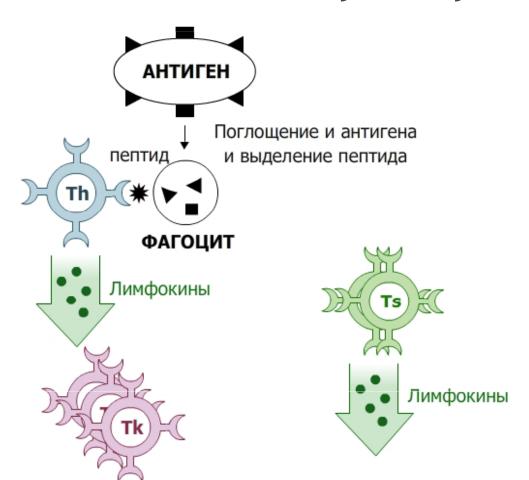
Биохимический барьер

- Пот
- Слюна
- Слезы

Врожденный иммунитет

- Сдерживание инфекции
- Воспаление

Приобретенный иммунитет

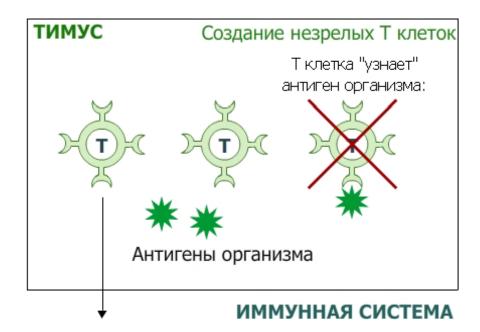

- Уничтожение вредоносных организмов
- Иммунная память для быстрого ответа на подобные инфекции

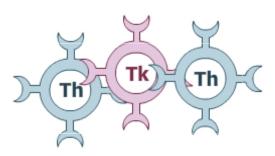
Приобретенный иммунитет

Информатика и компьютерные технология

Свойства приобретенного иммунитета	Основные участники	Типы иммунного ответа
Специфичность иммунного ответа — способность лимфоцитов распознавать определенные антигены	<i>Т-лимфоциты</i> (киллеры, хелперы, супрессоры)	По клеточному (основные участники – Т-лимфоциты)
Иммунная память — способность осуществлять быстрый иммунный ответ при повторной встрече с известным антигеном	В-лимфоциты (В-лимфоциты, плазмациты, клетки памяти)	По гуморальному типу (основные участники – В-лимфоциты)
Саморегуляция – способность к активации и подавлению иммунного ответа	Свободные антитела (рецепоторы В-лимфицита, покинувшие его поверхность)	
	Лимфокины - вещества активирующие или подавляющие иммунный ответ	

Иммунный ответ по клеточному типу

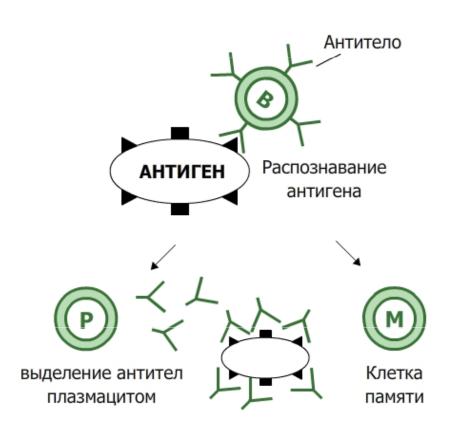



Информатика и компьютерные технология

- 1. Фагоцит поглощает антиген;
- Фагоцит переваривает поглощенный антиген и выделяет из него пептид;
- 3. Пептид презентуется на поверхности фагоцита;
- 4. Т-хелпер распознает пептид
- 5. Т-хелпер выделяет лимфокины, активирующие Т-киллеров;
- 6. Т-киллеры уничтожают зараженные клетки;
- 7. Т-супрессоры выделяют лимфокины, подавляющие иммунный ответ.

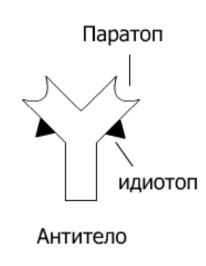
Отрицательный отбор

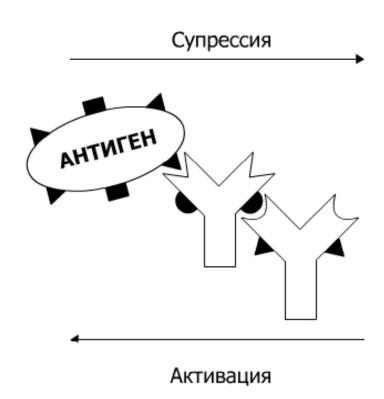
Информатика и компьютерные технология



Иммунный ответ по гуморальному типу

Информатика и компьютерные технология

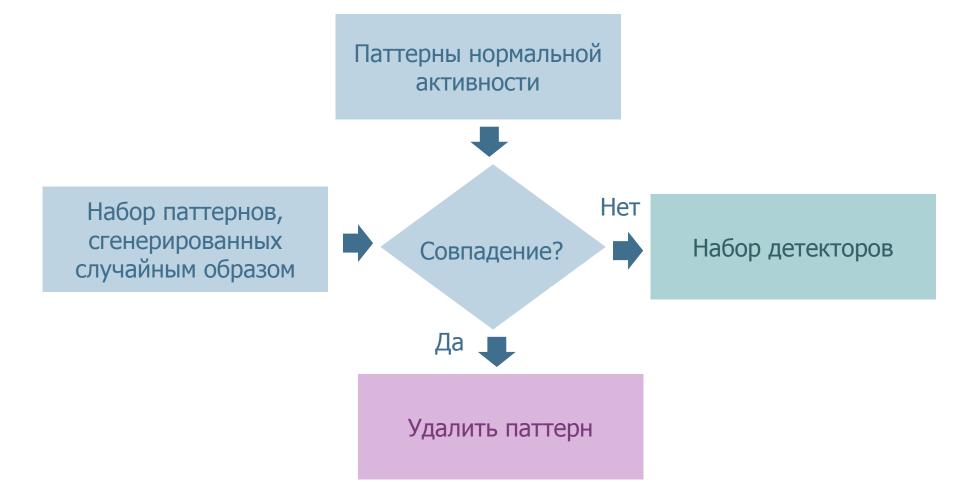

атика и 12.03.2010 терные



- 1. В-лимфоцит «узнает» антиген;
- 2. В-лимфоцит размножается, антитела на поверхности клонов претерпевают мутации;
- 3. Часть клеток выделяет антитела со свей поверхности (они становятся плазмацитами);
- 4. После иммунного ответа часть лимфоцитов умирает;
- 5. В-лимфоциты лучше «узнающие» антигены становятся клетками памяти и сохраняются примерно год (клональная селекция).

Иммунная сеть

Информатика и компьютерные технология


Искусственные иммунные системы и иммунокомпьютинг

Информатика и компьютерные технология

Иммунная система	Компьютерная имплементация
Отрицательный отбор T-	Алгоритм отрицательного
лимфоцитов	отбора
Клональная селекция В-	Алгоритм клональной
лимфоцитов	селекции
Иммунная сеть	Формальная иммунная сеть (FIN, Formal Immune Network)

Алгоритм отрицательного отбора. Генерирование детекторов

Информатика и компьютерные технология

12.03.2010

Алгоритм отрицательного Компьютерные технология отбора. Обнаружение аномалий

Набор детекторов Нет Вновь поступающие Проверка следующего Совпадение? паттерны паттерна Да Обнаружена аномалия

Аффинность

Информатика и компьютерные технология

12.03.2010

Аффинность – степень соответствия между антигеном и лимфоцитом.

Используемые виды аффинности:

Правило r-смежных совпадений

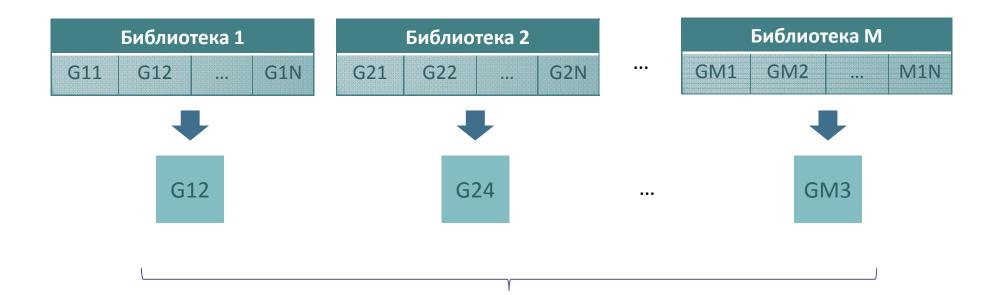
 Аффинность равна максимальному числу совпадений в смежных позициях двух паттернов

> 1**242**33043 3**242**14246 Аффинность = 3

Расстояние по Хэммингу

 Аффинность равна числу совпадающих элементов в одинаковых позициях

> 1**242**330**4**3 3**242**142**4**6 Аффинность = 4


Расстояние по Чебышеву

 Аффинность равна наибольшему модулю разности элементов паттернов

> 12423304**3** 32421424**6** |3-6|=3 Аффинность = 3

Модель костного мозга

Информатика и компьютерные технология

Лимфоцит				
G12	G24		GM3	

Алгоритм клональной селекции

Создание начальной популяции лимфоцитов

Для каждого антигена повторить:

Вычисление аффинности с каждым элементом Р

Выбор n1 элементов с лучшей аффинностью и копирование их (чем больше аффинность, тем больше копий)

Информатика и компьютерные технология

12.03.2010

Внесение мутаций во все копии (чем больше аффинность, тем меньше мутаций)

Нет

Условие останова?

Да

Помещение n2 лучших лимфоцитов в пул клеток памяти

Классификация систем обнаружения вторжений

Информатика и компьютерные технология 12.03.2010

Системы обнаружения вторжений

По способу обнаружения

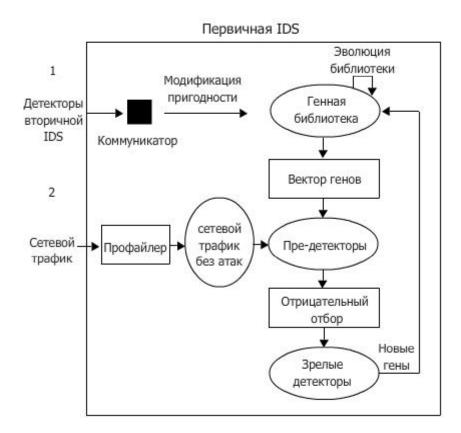
По типу мониторинга

Поведенческие

Сигнатурные

Узловые

Сетевые


Статистические средства, методы искусственного интеллекта

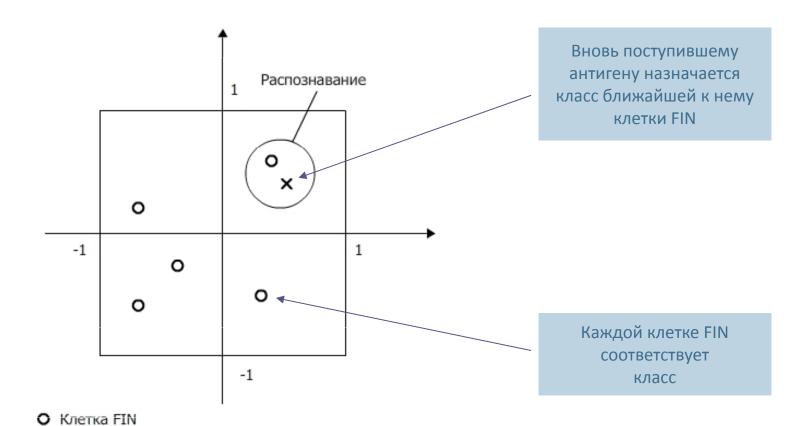
Поиск совпадений по шаблонам известных вторжений

Мониторинг одного компьютера Мониторинг сетевого трафика

Модель иммунной системы для обнаружения вторжений

Информатика и компьютерные технология

Formal Immune Network

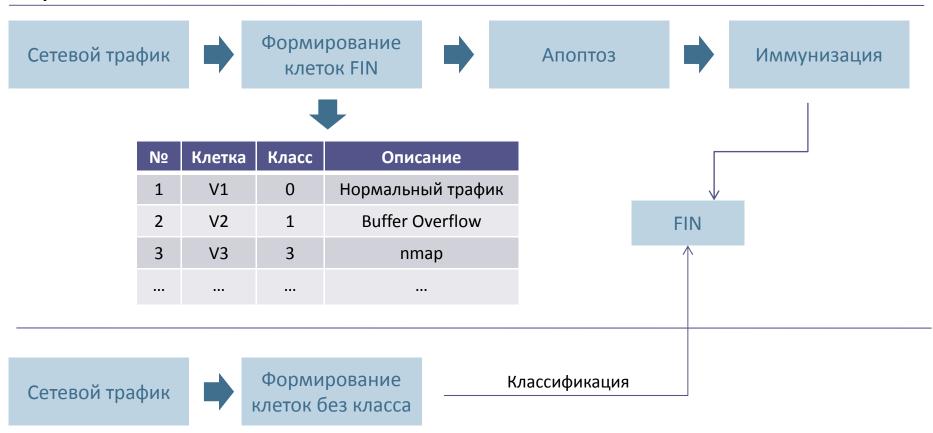

Информатика и компьютерные технология

Формальная иммунная сеть (FIN)	Набор клеток FIN=(V ₁ V _m)
Клетка, V	V=(c(V),P(V)), c(V) — класс клетки, P(V) — точка в Евклидовом пространстве
Расстояние между клетками, d	Расстояние по Чебышеву
Распознавание клетки V1 клеткой V2	Если c(V1)=c(V2) и d(V1, V2) < dmin, то клетка V1 «узнает» V2
Апоптоз	Если V_1 узнает V_2 , то V_1 удаляется из FIN
Иммунизация	Если V_1 ближайшая к V_2 среди остальных клеток, но классы этих клеток различны, то V_1 добавляется в FIN

Классификация с помощью иммунной сети

🗙 Антиген

Информатика и компьютерные технология

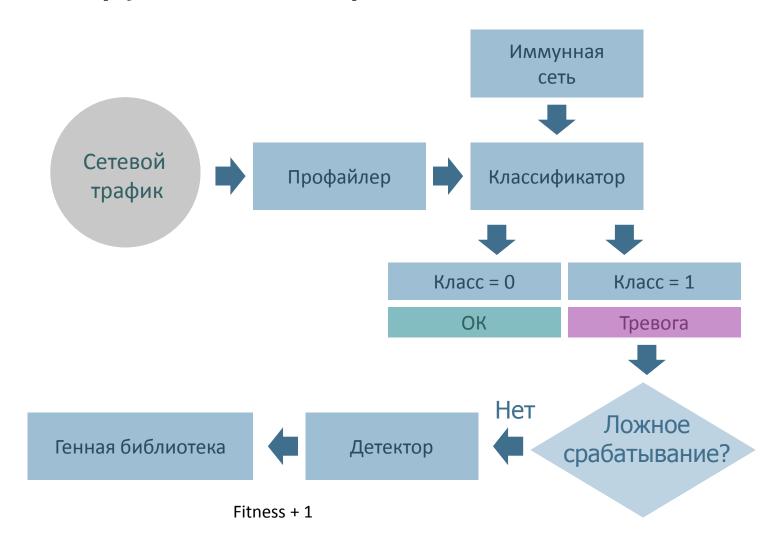


Иммунокомпьютинг в обнаружении вторжений

Информатика и компьютерные технология


12.03.2010

Обучение

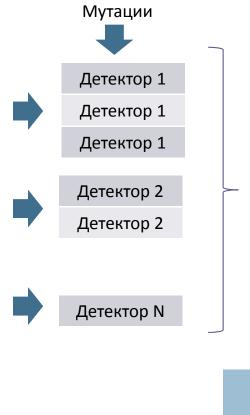

Предлагаемый подход. Обучение

Информатика и компьютерные технология

Предлагаемый подход. Обнаружение вторжений

Информатика и компьютерные технология

Предлагаемый подход. Адаптация

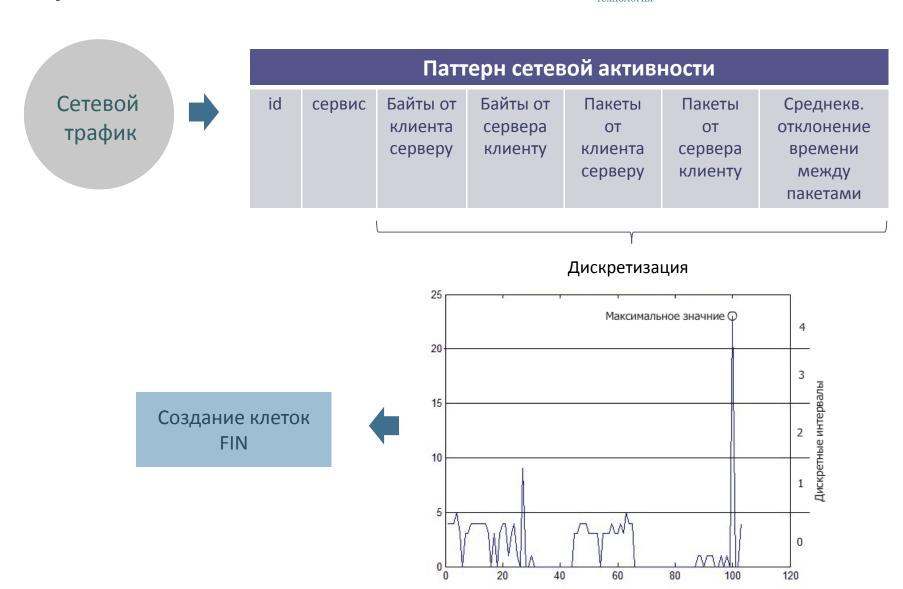

Информатика и компьютерные технология

12.03.2010

		_	
Генна	я ри	рли	ОТРКА
1 611114	/I O/I		OICING

Детектор	Fitness	
Детектор 1	f1	
Детектор 2	f2	N
		лучших
Детектор N	fN	детекторов
Детектор L	fL	-

f1 > f2 >...> fN >... > fL Замена худших детекторов новыми

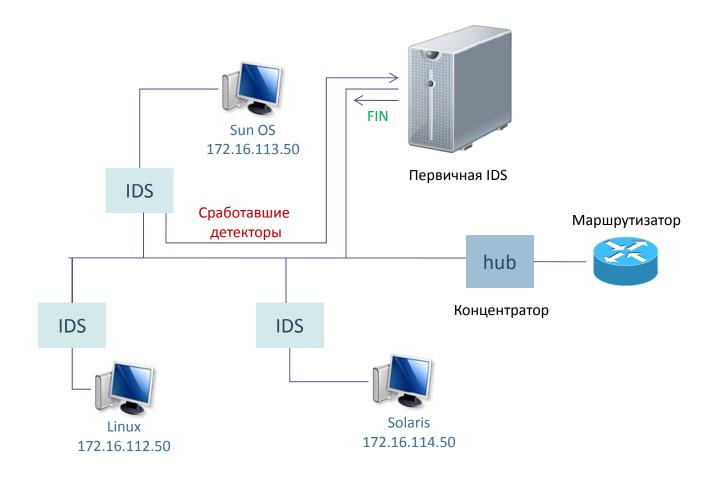


Отрицательный отбор

Новые детекторы

Представление данных

Информатика и компьютерные технология


Представление данных. Клетки FIN

Информатика и компьютерные технология

	Татте	рны	сете	вой а	ктивно	СТИ
P11	P12	<u>P</u>	13	P14	P15	P16
P21	P22	2 P	23	P24	P25	P26
•••				•••	•••	•••
P31	P32	2 P	33	P34	P35	P36
P11	P21	P21				
P12	P22	P22				
P13	P23	P23			улярно	
P14	P24	P24	7	разл	ожение	Прав
P15	P25	P25				сингуля
P16	P26	P26				векто

Расположение датчиков в сети

Информатика и компьютерные технология

^{*} Для экспериментов использованы данные имитационной сети DARPA

Эксперименты

Информатика и компьютерные технология

12.03.2010

Проверка уровня обнаружения вторжений в зависимости от временного окна

• Уровень обнаружения - отношение числа распознанных вторжений к общему числу аномальных паттернов

Проверка уровня ложных срабатываний в зависимости от временного окна

• Уровень ложных срабатываний - отношение числа ложных срабатываний к общему числу нормальных паттернов

Зависимость уровней обнаружения вторжений от порогового значения расстояния между клетками FIN

•От порогового значения зависит количество клеток FIN, а также эффективность обнаружения вторжений

Проверка уровней обнаружения вторжений и ложных срабатываний после адаптации

Сравнение с классической моделью иммунной системы

•Определение того, насколько предлагаемый подход лучше классической модели

Результаты

Информатика и компьютерные технология

Размер	Уровень	Уровень	Число
временного	обнаружений	ложных	клеток
окна	вторжений	срабатываний	FIN
1	0,9268	0,2722	32
2	0,8646	0,1717	90
4	1	0,3643	18
8	1	0,0968	96

Результаты

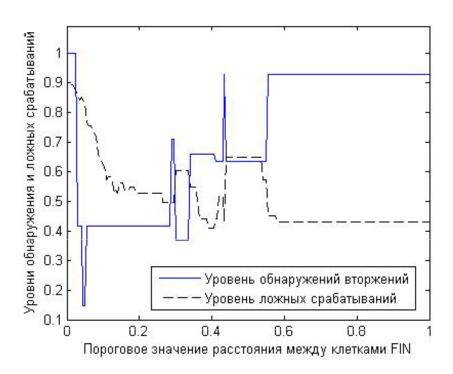
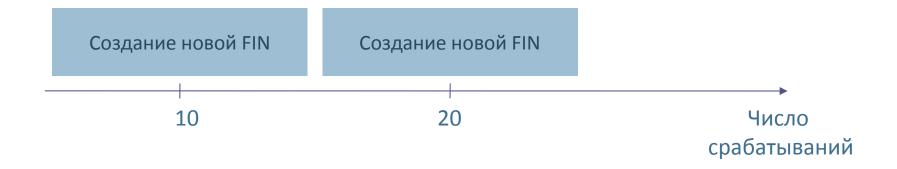


График для временного окна = 8


Информатика и компьютерные технология

12.03.2010

Оптимальная величина порогового значения в данном случае выбирается исходя из числа ложных срабатываний

Результаты

Информатика и компьютерные технология

Размер	Уровень	Уровень	Число
временного	обнаружений	ложных	клеток
окна	вторжений	срабатываний	FIN
1	1	0,1803	76
2	1	0,1214	65
4	1	0,0625	93
8	1	1	114

Сравнение с классической моделью иммунной системы

Информатика и компьютерные технология

12.03.2010

Работа системы без средств иммунокомпьютинга

Метрика	Уровень обнаружения вторжений	Уровень ложных срабатываний	Число детекторов
Расстояние по Хэммингу	0,0990	0,0196	1000
Правило r- смежных совпадений	0,0127	0,0586	1000

Информатика и компьютерные технология

12.03.2010

Выводы

- Дискретизация параметров трафика делает возможным создание детекторов
- Отображение паттернов сетевой активности в трехмерное пространство позволяет детекторам покрыть область аномальных паттернов
- Эффективность системы увеличивается благодаря эволюции генной библиотеки

Информатика и компьютерные технология

и 12.03.2010

Спасибо за внимание!